LYCEE SECONDAIRE METOUIA ANNEE SCOLAIRE: 2011 – 2012

DEVOIR DE CONTROLE N°2 SCIENCES PHYSIQUES

PROF:BEN ABDALLAH.A 3ème math1- 2 Durée : 2 heures

CHIMIE (7 pts) Exercice1: (3pts)

I – L'aspirine est un composé organique formé par les éléments C, H et O soit de formule brute $C_xH_yO_z$.

La combustion complète d'un échantillon de masse m = 1.8g d'aspirine donne : $m(CO_2) = 3.96g$ de dioxyde de carbone et $m(H_2O) = 0.72g$ d'eau.

- 1/- Calcule la masse de carbone m_C , de l'hydrogène m_H et de l'oxygène m_O contenues dans l'échantillon d'aspirine brulé.
- 2/- Détermine la formule brute de l'aspirine sachant que sa masse molaire est M=180g.mol⁻¹

On donne : $M(C) = 12g.mol^{-1}$; $M(H) = 1g.mol^{-1}$; $M(O) = 16g.mol^{-1}$

3/- Calcule le volume de dioxygène $V(O_2)$ nécessaire à la combustion complète de l'échantillon de masse m = 1.8g d'aspirine

On donne: V_M= 24 L.mol⁻¹

II – Détermine la formule brute du mono-alcool aliphatique saturé de masse molaire :
M'= 88g.mol⁻¹.

Exercice2:(4pts)

1/- Donne le nom de chacun des alcools suivants :

а	b	С	d
CH ₃ OH CH ₃ - C - CH - CH ₃ CH ₃	CH ₃ CH ₂ CH ₃ -C-CH ₃ OH	CH₃ CH₃−CH−CH₂−CH₂ OH	CH ₃ CH ₃ -C-CH ₂ -OH CH ₃

- **2/- a)** Ecris la formule semi-développée d'un alcool isomère de chaine de **a**.
 - b) Ecris la formule semi-développée d'un alcool isomère de position de a.
- 3/- Le Préparateur a versé chacun des alcools **a**, **b** et **c** dans un flacon qui a oublié de les étiqueter (mettre des étiquettes).

Pour identifier l'alcool contenu dans chaque flacon il les marques par les lettres A, B et C. Puis il réalise l'oxydation ménagée d'un échantillon de 1mL de chaque flacon en le mélangeant avec une solution acidifiée de permanganate de potassium KMnO₄. Les produits des réactions réalisées donnent les résultats suivants des tests avec le DNPH et le réactif de Schiff.

	A	В	С
DNPH	-	+	+
Réactif de Schiff	-	+	-

- a) Définis l'oxydation ménagée.
- b) Identifie (avec explication) les alcools dans chacun des flacons A, B et C.
- c) Ecris la formule semi-développée du produit de l'oxydation ménagée de chacun des alcools a, b et c en donnant son nom de famille.
- d) L'oxydant dans les réactions réalisées est il en excès ou en défaut ? Explique.

0,5 A₁

С

 A_2

0,5 C

0,25 A₂

0,25 A₂

1

1

0,5 A₂

0,5 A₂

1 A₂

PHYSIQUE (13pts)

Exercice1: (7pts)

La position d'un mobile M évoluant dans le plan est repérée dans un repère $\mathbf{R} \Big(\ \mathbf{O}, \ddot{\mathbf{i}}, \ \ddot{\mathbf{j}} \Big)$

par le vecteur : $OM = (2t-1)\ddot{i} + (4t^2-12t+8)\ddot{j}$

- **1/- a)** Ecris les équations horaires du mouvement du mobile. En déduire l'équation de sa trajectoire.
- **2/- a)** Détermine l'expression de son vecteur vitesse \ddot{V} .
 - **b)** Détermine la position M_1 du mobile ainsi que l'expression de son vecteur vitesse $V_1^{"}$ à l'instant $t_1=1,5s$.
 - c) Représente la trajectoire du mobile entre les instants 0s et 3s.
- 3/- a) Détermine l'expression du vecteur accélération \ddot{a} du mobile.
 - **b)** Représente les vecteurs V_1 et \ddot{a} avec les échelles : $1 \text{cm} \rightarrow 1 \text{m.s}^{-1}$ et $1 \text{cm} \rightarrow 1 \text{m.s}^{-2}$.
 - c) Déduis les valeurs de l'accélération normales a_N , l'accélération tangentielles a_T et le rayon de courbure \mathbf{R}_1 à l'instant \mathbf{t}_1 .
- **4/-** Détermine les valeurs de l'accélération normales a_N , l'accélération tangentielles a_T et le rayon de courbure R_2 à l'instant t_2 =2s.

Exercice2:(6pts)

Partie I:

Un voyageur arrive sur le quai de la gare à l'instant où son train démarre, le voyageur qui se trouve à une distance $\mathbf{d} = 20 \text{ m}$ de la dernière portière du dernier wagon, court à la vitesse constante $\mathbf{v'} = 6 \text{m.s}^{-1}$.

Le train est animé d'un mouvement rectiligne d'accélération constante a = 1 m.s⁻².

- 1/- a)Quelle est la nature du mouvement du train ? Justifie ta réponse.
 - b) Ecris l'équation horaire x(t) du mouvement du train.
 - c) Ecris l'équation horaire x'(t) du mouvement du voyageur.
 - d) Le voyageur pourra-t-il rattraper le train ? (la réponse doit être justifiée par le calcul)
 - e) Dans le cas contraire, à quelle distance minimale de la portière parviendra-t-il ?
- **2/-** Quelle valeur minimale $\mathbf{v_m}$ de vitesse le voyageur doit-il avoir pour rattraper le train.

Partie II:

Dans le noyau de l'atome d'hélium ${}_{2}^{4}$ He la valeur de l'interaction gravitationnelle entre les deux protons est de l'ordre de 10^{-35} N, celle de l'interaction électrique est de l'ordre de10N

- 1/- La force gravitationnelle explique-t-elle la cohésion du noyau de l'atome d'hélium ? Explique ta réponse.
- **2/-** Quelle interaction fondamentale serait-elle responsable de la cohésion du noyau atomique ? Explique comment agit-elle sur les nucléons.

1 A2