Obérie n° 9

Quantité de matière - La dissolution -Changement d'états physiques de la matière

Exercice n° 1:

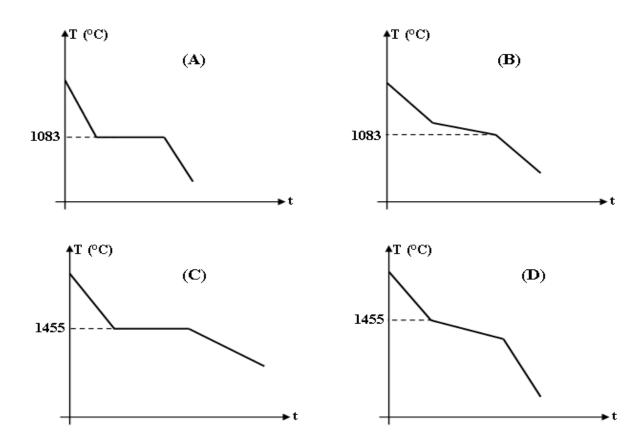
Le gaz propane a une structure moléculaire, sa formule est C_3H_x et sa masse molaire est $M = 44 \text{ g.mol}^{-1}$.

- 1) Déterminer la formule du propane.
- 2) a) Déterminer la quantité de matière de propane qui se trouve dans un volume V = 1,2 L.
 - b) Calculer la masse de cette quantité de matière.
 - c) Déterminer le nombre de molécules que renferme cette quantité.

On donne : M(H) = 1 g.mol⁻¹; M(C) = 12 g.mol⁻¹ et $V_m = 24$ L.mol⁻¹.

Exercice n° 2:

- 1) On dissout 20 g de sucre dans l'eau, on obtient une solution (S_1) de volume 400 mL.
- a) Définir les mots suivants : solvant ; soluté ; solution.
- b) Préciser le solvant et le soluté. Quel est le nom de la solution obtenue ?
- c) Définir la concentration massique.
- d) Calculer la concentration massique C_1 de la solution (S_1) .
- 2) On dissout 5 g de sucre dans l'eau, on obtient une solution (S_2) de volume 100 mL.
 - a) Calculer la concentration massique C_2 de la solution (S_2) .
 - b) Les deux solutions (S_1) et (S_2) ont-elles le même goût ? Justifier.
- 3) On mélange les deux solutions (S_1) et (S_2) . Déterminer la concentration massique du mélange.


Exercice n° 3:

- 1) On dissout 20 g de chlorure de sodium dans l'eau, on obtient une solution (S_1) de volume $V_1 = 100 \text{ mL}$.
 - a) Donner le nom de la solution préparée.
 - b) Identifier le solvant et le soluté.
 - c) Calculer la concentration massique de la solution (S_1) obtenue.
- 2) On divise la solution (S_1) en deux volumes égaux dans deux flacons A et B.
 - a) Déterminer la masse de chlorure de sodium et le volume de la solution versé dans chaque flacon.
- b) Déduire leurs concentrations respectives C_A et C_B .
- 3) Au flacon A, on ajoute 150 mL d'eau distillée pour avoir une solution (S_2) . Au flacon B, on ajoute 5 g de chlorure de sodium pour avoir une solution (S_3) .
 - a) Déterminer la concentration massique C_2 de la solution (S_2) .
 - b) Déterminer la concentration massique C_3 de la solution (S_3) .
 - c) Conclure.

Exercice n° 4:

Les quatre courbes suivantes représentent le refroidissement de quatre liquides différents :

- 1) Quelles sont les courbes qui correspondent aux corps purs ? Pourquoi ?
- 2) Identifier ces corps purs à partir du tableau suivant.

Corps pur	Etain	Fer	Nickel	Cuivre
Température de fusion (°C)	233	1530	1455	1083