

Lycée Bouarada

Devoir de contrôle N°1

Date: 07-11-2022

Durée : 2 heures

Coefficient: 4

Enseignant: Mejri Chokri

- * L'utilisation de la calculatrice est autorisée . Le portable es strictement interdit.
- L'épreuve comporte 4 exercices : 2 exercices chimie et 2 exercices physiques réparties sur 4 pages numérotées de 1 à 4.
- **❖** La page 4/4 est à remplir et à remettre avec la copie.

Chimie (9 points)		
	BAR	CAP
Exercice 1 : (4,25 points) 1°/ Définir les termes suivants : - Une réaction d'oxydoréduction. - Nombre d'oxydation . - Réaction par voie humide . 2°/ a- Montrer en utilisant le n.o que les équations suivantes corresponds aux réactions redox :	A 1	0,75
$+ HNO_2 \rightarrow NO + NO_3^-$ $+ ClO^- \rightarrow Cl^- + Cl_2$	\mathbf{A}_2	1,5
 Fe + Fe ³⁺ → Fe²⁺ b- Équilibrer la 1^{re} et la 2^e équation. c- Dégager les couples redox mis en jeu dans chaque réaction . 	A ₂ A ₂	0,5 1,5
Exercice 2 : (4,75 points) On donne : M(Sn)= 118,7 g.mol ⁻¹ ; M(Cu) = 63,5 g.mol ⁻¹ ; M(Ag) = 108 g.mol ⁻¹ Volume molaire : V _m = 24 L.mol ⁻¹ . Au Pt Ag Hg Cu Pb Sn Ni Cd Fe Cr Zn Al Mg Na Ca Be K Li Pouvoir réducteur croissant		
Un groupe d'élèves se propose de déterminer le pourcentage massique en cuivre (Cu) et en étain (Sn) qui constitue une bille en bronze de masse m pour cela ils réalisent les deux expériences suivantes : L-Expérience 1: Cette bille en bronze est placée dans une solution d'acide sulfurique H2SO4 de volume V = 100mL et de concentration C = 0,05 mol .L-¹ . Il se dégage un gaz qui détonne en présence d'une flamme. 1°/ Identifiez le gaz dégagé . 2°/ Écrire l'équation d'ionisation de l'acide dans l'eau . 3°/ Calculer la quantité de matière des ions H3O+ . 4°/ L'un des métaux ne réagit pas . Lequel . Justifier la réponse . 5°/ Écrire l'équation de la réaction d'oxydoréduction. Identifier les couples redox mis en jeu. 6°/ Sachant que le métal qui est attaqué par l'acide est en proportions stœchiométriques avec les ions H3O+ , déterminer :	A ₂ A ₂ A ₂ A ₂ A ₂	0,25 0,25 0,5 0,5 0,75
- La masse du métal m ₁ Le volume du gaz dégagé.	A ₂ B A ₂ B	′ ′

II- Expérience 2 :		
Après filtration le métal solide de la bille qui n'a pas réagi est placé dans <u>un excès</u> d'une solution de		
nitrate d'argent $(Ag+, NO_3^-)$. 1°/ Écrire les demi-équations d'oxydation et de réduction ainsi que l'équation de la réaction redox		
qui se produit.		
2° / Sachant que le dépôt formé à la fin de la réaction est de masse $\mathbf{m} = 8,185 \mathbf{g}$.	$\mathbf{A_1}$	0,75
Déterminer la masse du métal qui constitue la bille noté m ₂ .	A ₂ B	0,25
3°/ Déduire la masse de la bille ainsi que les pourcentages en cuivre et en étain dans la bronze de la bille .	_	ŕ
Physique (11 points)	В	0,5
Thysique (11 points)		
Exercice 1: (6,25 points)		
On donne: $K = 9. \ 10^9 \text{ U.S.I}$; $\ \vec{g} \ = 10 \ \text{N.} kg^{-1}$		
Deux charges ponctuelles q_A et q_B sont placées respectivement aux points A et B tel		
que $AB = d = 8$ cm.(Figure 1)		
Les valeurs absolues des charges sont $ q_A = q_B = 4$. 10^{-9} C. La figure ci-contre représente certaines lignes de champs		
électrostatique créé par le système $(q_A; q_B)$.		
A		
1°/ Préciser en le justifiant les signes des charges q_A et q_B .		
2°/ Représenter les forces électriques $\vec{F}_{A/B}$ et $\vec{F}_{B/A}$ qui constituent l'interaction électrique existant entre		0,5
q_A et q_B . Donner les caractéristiques de $\vec{F}_{B/A}$ (Sens, direction et valeur).	A ₂	0,5
3°/ Déterminer les caractéristiques (Sens ,direction et valeur) du vecteur champ électrique créé par les	\mathbf{A}_2	0,75
deux charges q_A et q_B dans les cas suivants :		
a) au point I milieu de AB. b) au point C de le médiatrice de AB et à 3 cm du milieu I de AB.		
 b) au point C de la médiatrice de AB et à 3 cm du milieu I de AB. 4°/ Au point C, on place une charge de valeur q = -2nC. 	\mathbf{A}_2	0,75
Déterminer les caractéristiques de la force électrique exercée par les charges q_A et q_B sur q .	\mathbf{A}_2	0,75
5°/ La charge $q = -2nC$ et de masse $m = 0.5$ g est accrochée à l'extrémité d'un fil isolant entre deux	C	0,75
plaques métalliques P_1 et P_2 .	Ü	0,
On établit une tension entre ces plaques métalliques de manière à créé entre celles-ci un champ		
électrique \vec{E} . A l'équilibre la charge q fait avec la verticale un angle $\alpha=15^\circ$. (voir figure 2)		
a) Préciser, avec justification les signes des plaques P_1 et P_2 . b) Reproduire la fig 2 et représenter quelques lignes de champ P_1		
b) Reproduire la fig 2 et représenter quelques lignes de champ entre les deux plaques et donner la nature de ce champ P_1	\mathbf{A}_2	0,5
électrique.	\mathbf{A}_2	0,5
c) Représenter les forces appliquées à la charge q à l'équilibre.		
d) Déterminer la valeur de la force \vec{F} exercée sur la boule.		0,75
e) Déduire la valeur du champ électrique $\ \vec{E}\ $.	A ₂ B B	0,5 0,25
Figure 2	Ъ	0,23
Evancias 1 · (4.75 maints)		
Exercice 1: (4,75 points) Les parties A et B sont indépendantes		
A°/		
1°/ Un aimant en U est placé de façon que ses branches		
se trouvent dans un plan horizontal et		
contenant le méridien magnétique. Figure-3		
P B		
a- Représenter quelques lignes du champ magnétique entre les branches de l'aimant en U .		
b- Comparer les valeurs du champ magnétique aux Figure 3	\mathbf{A}_{1}	0,25
points A et B à l'intérieur des branches. Justifier.	1	0,20
	A 2	0,25
Page 2/4		

- 2° / Au point **P** on place une aiguille aimantée mobile autour d'un axe vertical, on constate quelle prend une position d'équilibre qui fait un angle $a = 60^{\circ}$ par rapport au méridien magnétique.
- **a-** Représenter, au point, **P** le vecteur champ magnétique \vec{B}_a crée par l'aimant et la composante horizontale \vec{B}_H du champ magnétique terrestre.
- **b-** Déterminer les caractéristiques de \vec{B} au point **P**. A-t-il la même valeur qu'au point **A**? Justifier.
- **c-** Hachurer le pôle nord de l'aimant et orienter les lignes du champ à l'intérieur et à l'extérieur des branches.

A₂ 0,5 A₂ 0,25

 \mathbf{A}_{2}

 \mathbf{A}_2

 A_2B

 \mathbf{A}_2

C

 A_2B

0,5

0,25

0, 5

0, 5

0,5

0,5

R°/

1) Un solénoïde (S₁) d'axe (x'1x1) confondu à l'axe du méridien magnétique (SM-NM), de longueur $L_1 = 50$ cm et comportant N = 200 spires est parcouru par un courant I1. Le vecteur champ magnétique \vec{B}_C crée en son centre est représenté sur la figure-4- (page 4/4), sa valeur est : $\parallel \vec{B}_C \parallel = 0,4.10^{-5}$ T

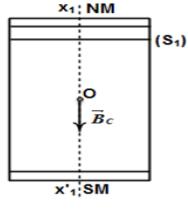
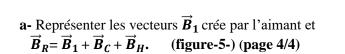
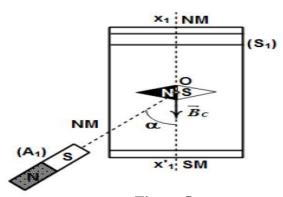
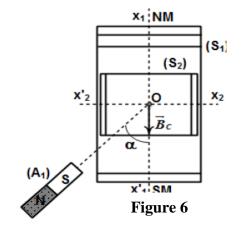
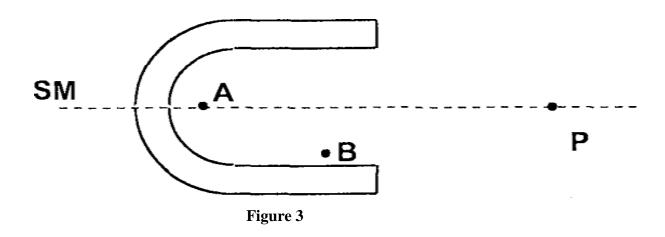



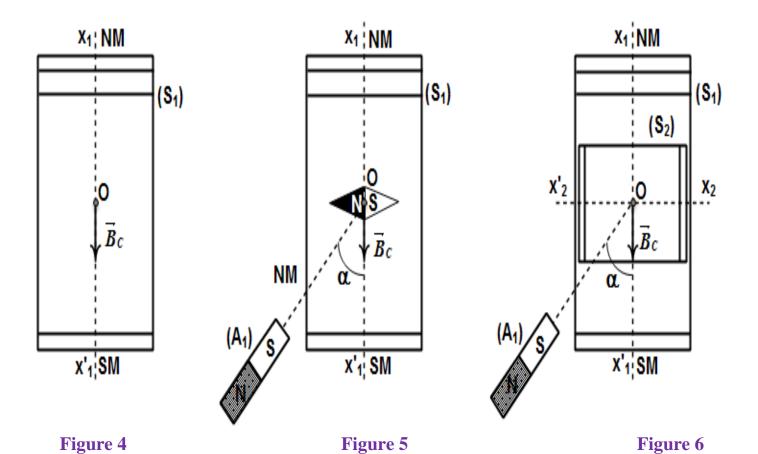
Figure 4

- a- Indiquer le sens du courant I_1 et les faces de (S_1) sur la figure-4-.page 4/4
- **b-** Calculer l'intensité du courant I₁.

5) L'aimant (A1) de champ magnétique $\| \vec{B}_1 \| = 3,2.10^{-5} \text{ T}$ est placé au voisinage du solénoïde (S1), axe fait un angle α avec l'axe (x'1x1). Une aiguille aimantée mobile autour d'un axe vertical est placée en O, elle dévie et s'oriente perpendiculairement à l'axe (x'1x1) du solénoïde (S1). (figure-5-) (page 3/4)

- **b-** Calculer α et déduire la valeur $\parallel \overrightarrow{B}_R \parallel$.
- 6) Pour annuler le champ magnétique total au point O, on maintient l'aimant (A1) dans sa position et on introduit à l'intérieur du solénoïde (S1) un deuxième solénoïde (S2) d'axe (x'2x2) perpendiculaire à (x'1x1) parcouru par un courant d'intensité I2 et comprenant n2=2000 spires par mètre.(figure-6-)
 - **a-** Représenter sur la **figure-6-** (**page 4/4**) le vecteur $\overrightarrow{B}c'$ crée par le solénoïde(S_2) au point O et le sens du courant I_2 . Justifier la réponse.
- **b-** Déduire la valeur de $\parallel \vec{B}c' \parallel$ et calculer l'intensité du courant I₂.


Figure 5

A₁ 0,5

Feuille annexe à rendre avec la copie

